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NATTONAL, ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2002

APPLICATION OF THE LAPLACE TRANSFORMATION TO THE
SOLUTION OF THE LATERAL AND LONGITUDINAL
STABILITY EQUATIONS

By G. A. Mokrzycki
SUMMARY

The application of the Laplace transformation to the solution of
the lateral and longitudinal stability equations is presented. The
expressions for the time history of the motion in response to a
ginusoldal control motion are derived for the general case in which
the initial conditions, initial displacements and initial velocities,
are agsumed different from zero. Some illustrative examples of the
application of the Laplace transform to ordinary linear differential
equations with constant coefficlents and a numerical example of a
gpecific problem are presented in appendixes.

INTRODUCTION

Recent developments in piloted and pilotless alrcraft, equipped
with automatic devices, have directed the attention of engineers to
the theoretical investigatlon of dynamic longitudinal and lateral
gtability problems of alrcraft designed for high-speed and high—
altitude flight. In the past, the dynamic stability investigations
were usually limited to the determination of Routh's condition for
gtability and for the calculation of the roots of the characteristic
gtablility equation to determine the damping of the modes of motion
and the period of the oscillation. A more complete analysis of the
problem requires the calculation of a tims history of the airplane
motion in response to a gust disturbance or in response to the
application of the control surfaces. As the methods of classical
analysis (references 1 and 2) proved to be inadequate for this
purposge, new methods of operational mathematics, representing a
more powerful tool, were used. These methods are known today as the
Heaviside operational calculus and the Laplace transformation. The
application of the Heaviside operational calculus to the calculation
of airplane motions is discussed in references 3, 4, and 5. However,
the Laplace transformation is considered a more powerful method than
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the Heavislde operational calculus because the initial conditions of
the problem, initial displacements and initial velocities, are inher—
ently taken into account by the Laplace transformation, whereas in
the Heavigide operational calculus, all initial conditions are zero.

In this paper, the Laplace transformation is applied to both the
longitudinal and lateral stability equations for the general case where
the initial displacements and initial velocities were assumed different
from zero. The operational equations obtained for this general case
were then solved and the tims history of the motion was obtained by the
Heaviside expansion theorem and by the inversion theorem for Laplace
transformation. The Laplace transformation is simple and effective.
Its principles are easily understood and its technigue guickly learned.
It represents a further development in operational mathematics because
it is a more powerful mathematical tool and because the difficulties
and obscurities of the work of Heaviside are avoided.

A short historical sketch tracing the development of operational
mathematics and its application to airplane dynamics 1is presented in
appendix A. '

The suthor ig indebted to Mr. Leonard Sternfield of the Langley
Stability Research Division, NACA, for informatlon and collaboration
he has contributed in comnection with this paper.

SYMBOLS
c chord, feet
b span, feet
S wing area, square feet
W . weight, pounds
m mass, slugs <g>
P density, slugs per cubic foot
v airspeed, feet per second
t time, seconds

o<
~—

8¢

nondimensional time parameter based on chord (t
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8p nondimensional time parameter based on span <% %)
Ho ) relative density coefficient based on chord <:§}>
c
My relative density coefficient based on span <E§$>
D. differential operator with respect to s, (é%—)
c
Dy differential operator with respect to sy (ag—>
8
b
P operator in Laplace transformation
A root of stability equation
kXo radius of gyration about principal longitudinal axis,
feet
kyo radius of gyration about principal lateral axis, feet
k7, radius of gyration about principal vertical axis,
feet
KXO nondimenslonal radius of gyration about principal
longitudinal axis (kxo/b)
Kyo nondimensional radius of gyration about principal
lateral axis (kYo/C)
KZO nondimensional radius of gyration about principal
vertical axis (kzo/b>
U\ angle between principal longitudinal axis of inertia
and flight path (fig. 1), degrees
€ angle between reference axis and principal longi—

tudinal axis (fig. 1), degrees

a angle of attack (fig. 1), degrees
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flight—path angle between path and horizontal
(fig. 1), degrees

attitude angle between reference line and. horizontal
line, degrees (a + 7)

deflection angles of aileron, elevator, and rudder,
degrees

pitching angular velocity, radians per second (6)
angle of sideslip, radlans

azimuth angle, radians

yawing angular velocity, radians per second (@)
angle of bank, radians

rolling angular velocity, radians per second (é)

increment of forward velocity, feet per second

nondimensional Increment of forward velocity (%)

nondimensional radius of gyration about longitudinal

stability axis <VKx02c082n + Kzo2sin2n)

nondimensional radius of gyration about vertical

gtability axis <Vk2020052q + KXOEBinen)
nondimensional product—of—inertia parameter

(KKZOE —-Kkog)sin 1 cos n)

rolling-velocity parameter (helix angle generated
by wing tip in roll), radians

pitching—velocity parameter, radians
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yawing-velocity parameter, radians

dynemic pressure

rectangular coordinates (fig. 1)
longitudinal force, pounds (fig. 1)
lateral force, pounds (fig. 1)

normal force, pounds (fig. 1)
rolling moment, foot—pounds (fig. 1)
pitching moment, foot—pounds (fig. 1)

yawing moment, foot—pounds (fig. 1)

drag cosfficient (?§§g>

11ft coefficient (L§§ﬁ>

longltudinal—force coefficient <é%)

lateral—force coefficient <£%>
normal—force coefficient <§%>

pitching-moment coefficilent <§§E>

rolling-moment coefficient G;%ﬁ)

5 : N
yaw1ng—momept coefficient <;Sb>
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£ = oCx
Do~ yfac
(&)
oCx
Cy = XX
00
oCx
2V
_ g
ST
oz,
CTu T Sa
c BCZ
Za " Ja
3¢y,
®Zpa = J7acy
(%)
_ oCz
20 = 5o
. aCZ
CZq_ 5 2_9_)
oV
oC
o = <z
Z8q ~ 3bg
Cpy
Cmyr = Sar
oCp
" " S0 :
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3Cq
* Cug = 55
Cp™ = Cn
SN C
)
n -
mﬁe - 888
- 1
=5
oCy
T =
aC
Cog = 55
oCq
Cz =
p pb
A\
Cy
Cy, = —=¢
D D
Y 3(39)
C,. = L
Dp = _/pb
3(%y)
3y
Cy, = - %
oCy
Czr = rb
(%)
3,
Cnp = b
(%)
Cy oCy
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Cy.5 = C1y . C 4 :
18" ", 2 %y T ¥
X, . Xp

Cnaﬁ =$a5a+ysr6r

G1, Gp, G3, H1, Hp, H3 functions of P on right side of oper—
ational equations

Z, 3, o 53}

determinants
A, Al’ Ae, A3 '
A, B,C, D, E coefficients in fourth-degree characteristic

egquations :
aj; - ¢ - 833 abbreviated cosfficients in operational
b . . .Db equation
11 33

g11(P) . . - 833(P) abbreviated functions of P in operational
h1(P) . . . h33(P) equation .
R regidue

The subscript o is used to indicate initial conditions, a bar
is used to denote veriables in the operational equations, and a dot is
used to denote differentiation with respect to time.

ANALYSIS

The purpose of this paper is to show how the longitudinal and
lateral stability equations can be solved by the Laplace transformation.
Thus no attempt is made to present a detailed discussion on the theory
of Laplace transform, which can be found in references 6 and 7 and in the
bibliography presented in appendix I of reference 6, but rathsr to
present sufficient background of the theory to permit a clear under-
standing of its application to this particular problem.

If a function x(t), defined for all positive values of the
variable t, is multiplied by e—I% and integrated with respect to +
from zero to infinity, a new function x(P) of the variable P is
obtained; that is »
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‘ (P) = fm o Ttx(t)at
0

This operation on a function x(t) is called the Laplace transformation
of x(t). The necessary and sufficient conditions for the existence of
the Laplace transform of a function x(t) are discussed in reference 6.
Let

a"x arix dx B
a-%—fl—+ala-€r-l.—_-i-+.--&n_la+anx—X(t) (l)

represent an ordinary linear differential equation with constant

coefficients a;, ao, 835 « « - 8p.7, 8p. If D is substituted

2

for g—t-, D2 for & 5> and so forth, equation (1) can be written in
dt

operational form

(Dn + aan‘l oo . a.n_an—l + a.n)x = x(t) (1a)

When t = O, the following initial conditions are assumed:

X = XO

dx

Xy = =

17 4t
an—ly

Xpn-1 = at

The Laplace transformation of equation (la), with the use of the
letter P for the operator, is
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Term
(Pn + aan”l + . . . ap 3P+ an>§ = %(P) corresponding
to
+ (Pn—lxo + P %xy + . . . Pxy o+ xn_l) D'x
+ al(Pn—ExO + Pn’BXl e Py o+ Xn—Q) pr—ly
+ ap_o(Pxo + x1) Dex
+ a,_1Xq ' Dx (2)

The transform T(P) for x(t) is taken from table I which presents
gsome simple Laplace transforms. A more complete table of Laplace
transforms is given in appendix IIT of reference 6 and in appendix A
of reference 7. Appendix B shows two illustrative examples of the
application of Laplace transform to ordinary linear differential
equations with constant coefficients.

Longitudinal Motion

The nondimensional linearized stability equations for longi-
tudinal motion are given by NACA in the form:

t - t i 1
EuCDcu = CXBGSG + CXu'u + (CX@ + 5 CXDQ(,DC)(L + (CXQ + 5 CquC>G

- 1
2p.D.(a — 8) = 026666 + CZu’u' + <CZOL + % CZDaP9>a + (CZG t s CZqD§>9 ?( |
3

= 1 ? 1
ou Ky2D,20 = émﬁeJ' 1 CmDSeDC>68 + Cmyut + (Cmu, + 1 cmDaDC)a

+ <Cme + % CmqDC>9 ]
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The Laplace transformation is demonstrated for the case in which the
elevator motion can be simulated by the sine function

g = Oy sin asg (4)

where ©p 1s the amplitude. (In most cases Oy is assumed to be l.)
Rearranging and substituting equation (4) into equation (3) give:

1 1
(aJ.CDC - ch,) ut — (ch +3 cXmDC>a — <ch + —E-CXqDC>9

=cxae§msin asg

g ,u' + [(a;c -2 sz>Dc - CZGJCL - [<2uc +z ch>DC + CZQ}G -
) g a

=CZ566msin as;

—Cp qut — (Cp + % 0 Do)o + (2ucKy2De2 = Cp, — = Cp Do )@
. ng * 5 Cmpg mg ~ % Cmg

1 .
= (C = D
(m68+-2 CmDSe c)sm sin asg

-

In order to illustrate the use of the Laplace transformation for
a very general case, the only initial condition assumed to be zero
is Seo = 0; that is, the deflection 1s measured from its trim

position before the maneuver begins. For all other parameters the
initial conditions are assumed to be different from zero; thus
the values are u,', a,, 8,, and q, at s; = 0. The equations can

then be written in general form, in which the four initial disturbances
are combined with elevator motion. In a specific problem some of the
initial conditions would probably be zero. TFor practical engineering
purposes, in fact, the most interesting cases are

(1) Disturbance only in angle of attack a, (due, for example, to a
gust); elevator fixed; all other disturbances zero (uo‘ =805 =Qqg = O)
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(2) Change in thrust, thus ug* # 0; elevator fixed; other
disturbances zero (“o =65 = 4o = 0)

(3) Disturbance caused by elevator motion; other disturbances
Zero (uo' =ag = 05 = qp = 0)

Each of these assumptions greatly simplifies the equations and
shortens the computations, because many terms in equations developed
for a general case will vanish.

The ILaplace transformation of equation (3a) can be written as
follows:

|-
o)
>
Q
N2
|

(2ueP - Ox ) W' ~ (CXOL + 2 cXmP>a - <CX o+

- _a 1 _Llg ~Lcge
Cxs Bmpp, 55 * Helo' ~ 5 CXpg¥o 5 Cxqf0

+
—
N

+

Q
I
i

(@]

[\
&_
]

I
Q
&
al
I
—
P
Q
+
I
Q
[N
g
Hd
+
Q
[
g
[es)
y

-—Czu'_ﬁ'

_ a 1 1 r(5) )
~Coe tuigs * (Mo = & oo ~ (B0 3 2%

- 1 - 2
- (Cmtse* 2 CmpaeP>8m B, 2 2 Umpgo * AMY (poo + )
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Equation (5) can be expressed in a shorter form as

where

a1

alpo

513

any

apo

823

833

ajju' + ajox + al35 =G
aglﬁ' + agea + a235 = G2

aBlﬁ' + 8326 + 8.33-5 =

I
Q2
W

= QUCP - CX-u!

- —<CX9 + L chP>

CZul

1
= (2 -z P_-C
(HC 2 Z‘Dcx> Zqg,

1 .
= —|:<2l.1c + —2- Czq)P + CZGJ
fiipR

= — L

= (Cma + 5 CmmP>

= 2p Ky“P° — % cqu -

13

(5a)

(6)
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1 1 2, a2
a0xp Oom + (Brouo' — 3 CxpgP — 5 0x,90) (P2 + °)

Gq =

(P2 + az)
__&(?)
P2 + &°
(P + ia)(P — ia)
1
aCZSeBm+ I:EIJC - -12—'- CZD(L)G’O — (2}10 + 5 CZq>90] (P2 + 8,2)
Go =- 5 5
(P + a )
& (70)
(P + ia)(P — ia)
- aC +&¢ P+[2uK2P9 +q) —£cC Ay — % C 9]P2+a2 .
ey - m5e6m ngbem rcY(o o) D VIipg, O gmqor( )
(P2 + a2)
¢
_ 83(P) (7¢)
(P + ia)(P — ia)
Now the system (5) or {5a) represents three simultaneous algebraic
equations which can be solved for ©', @, and 6 by the method of
determinants. Thus
T o= =& (8a)
JAN
® = =2 (8b)
JAY
g-= (8c)
A "
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where the determinant

811 #1813
B=lay 8y 8y (9)
831 %32 833

The expansion of the determinant A results in a quartic equation
in P

A =AP* + BP3 + CP2 4+ DP + E (10)

which generally has two pairs of complex conjugate roots, namely

. Pl,2 = -a X ib
v | P34 = — % id
Thus
A=((P+a—ib)(P+a + 1b)(P + c — 1d)(P + ¢ + 1d) (10a)

The coefficilents of the quartic (equation (10)) are

A= eucaxye(uuc - CZDQ>
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B = U [KYQ(CXu: Oz = Moxyebe — Moz b = Cz,Oxpy)

+ %(szcmq - cmmczq) ~ 2u, (cmq + cmm):l

C = C C + C,, C — k4c + C C — k4C + C C
E‘Lc( Xyr oy my " Zq, mgHe Zpg Mg mt'e Tipg, Xyt
1
—-C,Cy, —C C - C C -C C + =(C C C
My, "2q Ting, 29 Myt “Lpg, — My Xq) u( g, Xyt “2g

C

— O CE, Oz + CngC2it Cope, — OX Oy, ~ C2Cmyt Oty

2
* OppoOx Omy) * oKy (CryCrg ~ Cz cxa)}

_ [
D = [-2-(cmmcxu,czq = O Cx,107, — CmgCx 102, * CpeCiy Czg * O gt Ok,
+ CrpCz01 Oy, ~ 0% C20Omy, — C%02ui Cmpyy — ©20m O%y, = O26%mur “Xpg,
+ szcmu' CXQ + Cmu' CZG,CXq) + 2“0 (CmQCXu' + CmQCZa

+ Cn_Cxyy — On 07y = CuyOx, — Conye CXG)]

E = Cx, (CmaCZe - CmGCZCL) + Cg (CmeCXa - CmaCXe) + Cmu'(CZa,CXG - CZeCXa)
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The other determinants are

Gy  ap a3

e
1
(]

no

ap2  apjy

a1;1 &2 Gy
£3 =lap e G

a

31 %32 M3

When expanded the determinants can be written

17

(11)

(12)

(13)

(11a)

(12a)

(132)
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where the minors
8op
fi11 =
a32
a1
fo1 =
a3l
851
3.31

fij(P) are
as3

fip
833
a23

foo
833
8o
8.32

After expanding, there result

It

£11(P) = {:Kyguc(huc - CZD(L)] p3

+ (CZaCme - cZecma)}

a1p

32

11

31

11

8.31

a13
f13
833
813
fp3
833
8o
£33
8.32

NACA TN 2002

810

22

811

21

11

any

+ “Cmq(-i‘; CZDcx, - “c) - CmD(I<-lJi CZq + “c) - 2CZOL“CKY{I P2

813

23

13

23

12

app

’— .
1 1 1 , ,

(14)
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f10(P) = {(—CXM‘*CKYE)P3
2,1 2
1
+ 2(cxmcmq + Oy Omy — CxOmy — qucmu)P

+ (cxacme - Cx eCmOL)} (15)

_ 1 1 2
f13(P) = {IE:XDa(E ch + HC> + Cxq<l-10 i sz>]P
+ oy (e, +2n ) + Cy (on. —L¢
Xa\2 “2q T Te) T MXg\ e T3 Vipg
1 |
=(Cv Co» -
+ 2( XD(I ZG CXq_CZG,):lP

+ (chcZQ - chcZa)} | (16)

- 2\ p2
£5,(P) = {(_20Zu.”cKY )P
1
_ [Cmm(E Ozy + 2%) -4 CZu,Cm;JP

—~ (czecmu, - CZu'Cme>} (17)
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£o0(P) = {(Auchye)ﬁ
- [“c (ecxu'KY2 + cmq)] P2
+ [%(cchxu' - CXQC%‘) -~ 20%;10]:9

+ (cxu,cme - Cmu'CXe)} (18)

£53(P) = {[—uc(czq + uuc)] 125

1 1
— | -C = C + 2 2C =
[ Xu,<2 Zq IJC> + Zellc + 5 Czu'Cxq:IP

- (chcZu, - CXu'CZe))} \ (19)
£31(P) = {[% Cpp Oz 0 * cmu,(éuc - % CZDOL>]P
+ (CZurCma - cmu'cza)} (20)

- 2
f32(P) = ["(CmDocuc)P
—(28,Cy — % Cg (Cy. + = Cp Cx. JP
cVlg, T 2 "Xyt mipg T 2 Myt "Xpa)

- (Cmu' Cx, — ch,cma)] (?l)
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£33(P) = [FC(MuC —~ CZDai]Pe
*‘[?Xﬁ=<% Cop, —-2uc> ~ 265 b, ~ %-czu,cXDu]P
+ (cxu,cZOL - CZu'CXa) (22)

The solution of equations (8a), (8b), and (8c), which will result

in a time history of Tu', &, and 6, respectively, as a function

of s8¢, can be obtained from the Heaviside expansion theorem when there
are simple poles (reference 6). This expansion theorem is an efficient
method of finding the inverse lLaplace transform of the quotient of two
. . f(p§
pelyneomials E(—;. If, for example,

P

_ £(p)
F(p)

|
DWFJI

vhere f(p) and F(p) are polynomials with no common factors and the
degree of f(p) 4is lower than that of F(p), then for the case of
simple poles and distinct roots

= :%i ;Exﬁ) oMnfc

where )\ are the linear and distinct roots of F(p) set equal to

zero. The Heaviside expansion theorem is modified as indicated in
reference 6 if any of the roots of F(p) = 0 are repeated linear
factors. It is important to note that the expression for the Heaviside
expansion theorem given here is different from the expression given

in reference 4 because of the different transforms of functions that
are used in the Heaviside operational calculus and Laplace transfor—
matlion. However, if a problem is consistently followed through by
either one of these two operational methods, identical solutions will
be obtained.

The application of the inversion theorem of Laplace transformation
to the solution of equations (8a), (8b), and (8¢c) by computing residues
is shown in appendix C.



22 ‘ NACA TN 2002

Lateral Motion

The nondimensional linearized NACA standard equations of motion

are
N
Sideslip:
2y (Dy8 + DY) = Oy, B + Oyg8 +2 Oy Dpff +0rf+ (C, tan 7+ 2 Cy Dp¥
Roll:
r(23)

iy, (Kx 2Dy 20 +EgyDy,2¥) =C3, B +C 1P+ le 1, Dof Loy Dp¥
Yaw:

i, (K5 2D, 20 + Kz7D29) = Cpgd + CngP + z Cn Do +2 Cp Dp¥ Ji

It is important to note that from the standpoint of mechanics,
Kxz, should be defined as Kxz = _<KZ02 - Kxog)sin 1 cos 13 in a right—
hand system of axes. However, the definition of Kyx, a8 presented in

the symbol list is used in the paper to conform with recent NACA standard
equations of motion.

The Laplace transformation is demonstrated for the case in which
the control—surface motion can be simulated by the sine function

® = By sin asy (2k)

where ®p is the amplitude. (In most cases Jp is assumed to be 1.)
Rearranging and substituting for o give:
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(Q%Db - CYB>B - (% Oz Dy + cL>¢ + (2ub1)b ~ %oy Dy = Cp ten 7)\1! = Og By sln asp

1P + (E“benge ~30 Db)¢ - <% €1 Dp — 2“beszE)“‘ = O30y sin asy

P

'—CnBB - (% oJJ.PDb - EHbKXZDb2>¢ + <2ubKZ2Db2 - % CnTDb>‘l’ = Cpgdn 5in agy,

23

N

> (23a)

J

If the initial conditions (for s, = 0) are B, By, Vos Py, and T, and the trim position
is nesumed as zero (thus &, = 0), the Laplace transformation (with P substituted for p
to avoid confusion with angular velocity) for equation (23a) can be written as follows:l

(Qp.bP - OYB>E - (12- Oy, P + CL)¢ + (eubp - % Cy,P — Cf, ten 7)Tv = Oygby m
+ 2By — %’ CYP¢0 * (Q“b - % CYI-)WO
~C1gP + (EHbKXEPE -3 clpr)ﬁ - (35 C1 P - EubezPe)?v = Cigbn 52—

+ 2ufr?(Po + Bo) = % Coflo = % Oy + 2uRyg (B, + 7o)

s T

-5 onfy + 2upEiz (o + o) + 2upKz2(PY, + 7o) = & Cap¥o

Equations (25) can be expressed in shorter form as

byq B + b22¢ + 'b23\lr =1,

> (25)

> (25a)

1For practical engineering purposes a simplified case ig of interest, namely
response to a horizontal gust Vo, while By = $o = Do = r5 = & = O.
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where
.
b1y = 2mP — CYB
b1 = —(—é— CYPP + CL>
by3 = <2L1‘bP - :—é- CYI-P — C1, tan ')’>
bp1 = —Lig
bop = <2ubKX2P2 - % ClpP) . (26)
boz = (% Cy P — 2 KyyP?
b3l = _CnB
1 2
b33 = <éubKZ2P2 -1 Cﬂré)
-t
CyyOm2 + [é“bﬁo - % CypPo — (% Cy, - 2ub>Wé](P2 + a?)
Hy =
(P2 + a2)
_ (P
P2 + a2
hy (P)

(272)

B (P + ia)(P ~ ia)
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Cy Bya + [eubeE (B8, +20) =3 C3 P02 03 ¥+ By (P + ro)] (P2 + 82)
P2 + a2

Hp =

_ _h2(P)
P2 4 a2

_ hp(P) | (27b)

(P + ia)(P — ia)

- 2 ~1 2482
- Cnp Oma + 5 CnP¢° + 2ubez(P¢o + po) + 21, Ky, (PWO + ro) 5 Cnrll'o] (P2 + 82)

3 \ P2 + a2
h3(P)
P2 + g2
hL(P)
- 3 (27c)
(P + i) (P — 1a) :
Now equations (25) or equations (25a) represent three simultaneous
algebraic equations which will be solved for B, ¢, and V¥ by the
method of determinants
E.= el (28a)
A
= A
g === (28b)
JAN
=22 (28¢c)
A
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where the determinants are

by3  bip P13

A= |bpp by b3 (29)
b3y b3y b33
H Dbjp P13

Oy = |Hy bpp  bpy : (30)
Hy Db3p D33
b3 Hy P13

ZQ = b2l H2 b23 (31)
b3; Hy b33
byj; b1 H

By = by bpp B (32)
by Py Hy

If the values of equations (26) are substituted into equation (29) and
the determinant A is expanded, a quartic equation is obtained

A =AP* + BP3 4+ CP2R + DP+E =0 - (33)
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which generally has a pair of complex conjugate roots and two real

* roots
P1,0 = —a £ ib (Dutch—roll oscillation)
P3 = — (spiral mode)
P), = -4 (rolling subsidence)
Thus
A=(P+a—1b)(P+a+ 1b)(P + c)(P + d) (33a)

The coefficients of equation (33) are

A= 8111)3 (KXQKZ2 - KXZ2)
B = ‘—E“be[KXz (msPoyg + Cn) + K201, — Exp (Cop * C2r + QKXZCYB)]

- 2 - 2 -
C = ub[KX (CYanr + hpbcnﬁ chan) + Ky (CYBCIP CYPC?'B)

- Kxv, (CYBCII' + CYBCnp + l"“bcls - CYrCzB - CYPCnB>

+ %(clpcnr -~ Cn-pclr)]
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D = {—QubCL[tan 7(KX20nB — KyvCq B) + KZQCIB - KXZCHB]

1% (Cae e = Ol * O3, 0r, ~ Or,Ony)

+_CnB(CYrCzp - Cchlr)] * “b(clﬁcnp B Cnﬁclpi}

Cy, '
E = —é—[tan 7<CnBC'LP - CZBCnp> + ClBCnI. - CnBClr]

The development of the determinants (30), (31), and (32) gives

Zl = HlFll(P) —_ HEF]_Q(P) + H3Fl3(P) (303)
Lo = —H Fop(P) + HoFpo(P) — H3F23(P) (31a)
A3 = HyF31(P) — HoF35(P) + H3F33(P) (32a)
where the minors are
bos  bps b1p P13 b1p b3
Fi1 = Fio = F13 =
b3p b33 b3p b33 bop  bo3
bol  bpog bi1  b13 b1l b13
For = | Foo = | Fa3 =1, 4
31 33 31 33 2l 23
boy  Pop b1y P1o b1 Pio
Fap = | F3p = F33 =
b3 P3p b3 Db3p bop  Pop
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The expansions yield
Py (P) = b2 (&P, - Bp?) P - lJLb[Kxgcnr + B0,

- Exg (O, + czr)]las +FCa e ~Cp 0 )2 (30)

F o (P) = ub[-xxz(hub - ch) - KZQCYP]P3
+ &(cypcnr - chcnp) - ub(QKZE‘CL — 2KxyCy, tan 7 — cnij P2

o |
+ —eé(cnr ~ Cp, ten 7)P (35)

F13(P) = [ubKXQ(—hub + cyr) - ubKXchp] p3

1
+ {E(CITCYP - CYrclp) oy [E‘CL(KXQtan 7 - KXZ) + Clpjl} p2

C
« %(er, - Cagtan 7)p (6

Fo1(P) = 2Kz - KxzCng)P® + %(Clgcnr ~ CngCa,)P (37)
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FoolP) = {uubKZ2P3 -y (EKZQCYB + cnr)P2

+ [%(CHI'CYB - CYrCnB) + 2uanB}P — Cp, tan 7 Cnﬁ} (38)

1 - —

F31(P) = [eub(-KXZCIB + Kx<Cp )p2 + %(cnpczﬁ - anclp)P] (ko)

]

1
F3o(P) [hubEKXZP3 + ub(-zKXZCYB — Cny P2 + -2-(cn]ch[3 - ancYP)P

-~ chn] (41)

2K 2 2 1
F33(P) [Aub Ky“P3 — ub<2KX Oy + Czp>1’2 + E(CYBCIP - CYpCIB)P
- chzﬁ] (4¥2)

As indicated in the section entitled "Longitudinal Motion" the
solution of equations (28a), (28b), and (28¢), which will result in
a time history of B, @, and V¥, respectively, as a function of sy,
can be obtained from the Heaviside expansion theorem (reference 6)
or by computing residues as shown in appendix C.
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General Remarks

The method presented in this paper can also be applied to cases in
which the airplane is equipped with automatic pilots acting on elevator,
rudder, and ailerons. Each automatic pilot is characterized by addi-—
tional equations of motion. Thus, generally speaking, there are four
simultaneous equatlons for longitudinal motion and five simultaneous
equations for lateral motion (two automatic pilots). As before, the
Laplace transformation is applied to these equations and the problem is
treated according to the method indicated in this paper.

Some transforms of simulating functions for control—surface motion
are presented in appendix D and simplified methods of computation of
Laplace transformation are given in appendix E.

CONCLUDING REMARKS

The application of the Laplace transformation to the solution
of the lateral and longitudinal stability equations has been presented.
The expressions for the time history of the motion in response to a
sinusoidal control motion were derived for the general case in which
the initial conditions, initial displacements and initial velocities,
were agssumed different from zero.

Ryan Aeronautical Company
Lindbergh Field, San Diego, Calif., July 22, 1949
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APPENDIX A
HISTORICAL SKETCH

A short historical sketch on the development of the operational
calculus and its application to airplane dynamics is presented.

The fundamentals for the theory of small oscillations about a
steady state of motion were developed- in 1877 by Routh (references 8
and 9). Then as early as 1903 Bryan applied the mathematical equations
of motion of a rigid body to the disturbed motion of an airplane
(reference 10). In the following years the mathematical theory remained
fundamentally in the form proposed by Bryan, but the method of appli-
cation was changed as the result of the development of experimental
research by the NACA.

During those years many sclentists were working on the problems of
dynamic stability, not only in the United States but also in Great
Britain, France, Belgium, Germany, and other countries. In 1927 the
equations of motion were first expressed in dimensionless form
by Glauert (reference 11). Jones, Balrstow, Zimmermsn, and Millikan
(references 1, 2, 12, 13, and 1k) also dealt with dynamic stability
and their work is well-known to the average engineer in this country.

The need for a means of describing the response of the system
(mathematically similar to the system used herein) to the applied
disturbance was realized by electrical engineers many years ago.

In 1899 Heaviside, impelled by this need, contributed a significant
development. In his electromagnetic theory he originally devised
his operational calculus for the solution of ordinary linear differ—
ential equations with constant coefficients and some of the partial
differential equations of applied mathematics. The principles of
this method are illustrated in reference 15.

The significance of Heaviside's contributions were not recognized
in his lifetime because of the inadequacy of the mathematical treatment
and the obscurity of his papers. Bromwich, making use of the theory of
functions of a complex variable, explained and established the validity
of Heaviside's methods. Bromwich's method consisted of finding the
golution of a given differential equation, with initial and boundary
conditions, in the form of a complex integral over a suitable path;
the choice of the integrand and contour is sometimes difficult. Further
research by Carson, Carslaw and Jaeger, and Doetsch (references 16
to 18) resulted in the application of the Laplace transformation to
the differential equation. Finally, Doetsch recognized fully the
value of the "inversion theorem" for the Laplace transformation. Thus
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the Laplace transformation is an important step forward in operational
mathematics. A complete treatment of the subject of Laplace trans-—
formation can be found in references 6, 7, and 17. For some time now
it has been recognized that by applying the Laplace transform a better
substitute for Heaviside operational methods can be obtained.

Among the early attempts to apply operational calculus to the
problems of stability and control was a very fundamental work well—
known in this country (reference 4). This paper deals with lateral
motion and applies Heaviside operational calculus. Later several
papers were written on the dynamic response of the alrcraft which also
made use of the Heaviside method. Some dealt with tail load variations
due to elevator motion (for example, see reference 19). Others dealt
with stability with free controls (reference 20), stick forces in
maneuvers (reference 21), and the behavior of the airplane equipped
with automatic control (reference 22).



NACA TN 2002

APPENDIX B

TLLUSTRATIVE EXAMPLES OF APPLICATION OF LAPLACE TRANSFORMATION

Example 1

Example I illustrates the application of Laplace transform to the
equation

(D2 — 3D + 2)x =eat . (%t <0)

The initial conditions when t = 0 are

x = Xo
Dx = x1
Table I (transform 3) shows that the transform of | .
x(t) = ea£ .
is
x(p) = —=
(p ~2)

Thus the Laplace transformation of the given equation is (n = 2 when
equation (2) is applied)

(p2 — 3p + 2)2 = D E Y + (pxo + xl) - 3%,
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Example II

'+ Example II applies the Laplace transform to the equation

(p3 — 202 4 D)x

L (t > 0)

The initial conditions when t = QO are

Xg = 1
Xl =2
X2 = -2

Table I (transform.l) gives the transform for

x(t) = 4

as

%(p) =

g+

If the rules of equation (2) are applied, the transform can be
written (n = 3) as ‘

(p3 - 2p2 + p)X = % + (p2xo + DPX] + xe) - 2(pxq + x1) + X

%+(p2+2p—2)—2(p+2)+l
p3—5p+ 4
D
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APPENDIX C

THE INVERSION THEOREM OF LAPLACE TRANSFORMATION

By means of this theorem x(t) can be obtained from its
transform x(P). If

%(P) = LI]w e—Ptx(t)dt R(P)'> 0
0

then
Y+io
x(t) = 5= w(A)erMran (c1)
ir .
7—1l00
where 7 1is a constant greater than the real part of all singularities

of X(\) and

Y+ic Y+iw
) = lim

The path (7 — 1o, 7 + iw) may be replaced by a circle C containing
all the poles of the integrand. Then x(t) is equal to 2ni times
the sum of residues at these poles. The method of evaluating the

residues is shown at the end of this appendix.

Example 1

Let

- P34+ P-4
T -
P2 — 2P — 3
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The inversion theorem, with A substituted for P in the equation,
gives

7+1co 3
1 Ao+ A — 4 ektdk

T 2in Yioo X2+2X—3

The denominator has two roots —3 and 1. The residues must be evalusted
at two simple poles at A =1 and at A = -3 and then summed in order
to obtaln x.

Example 2

Consider the simultaneous equations
(3p+2)3€+P3>7=%

PX + (4P + 3)F =0

which yield

-J—c'_: 14|~:P-'l'3
P(P + 1)(11P + 6)

- 1

7 =

" (1P + 6)(P + 1)

Application of the inversion theorem of Laplace transformation gives the
golution

1 y+ie WA+ 3

= — erMtan
2% Jy—mie MM+ 1)(11IN + 6)
L 4

X
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+300 AL
y = —-—’1;— e d_x
1 [y 1 (112 + 6)(X + 1)

The sums of residues on each pole for x and y give tlie solution as
g function of time.

The inversion theorem for Laplace transformation is now applied
to equations (8a), (8b), and (8c). If X 1is substituted for P, new
determinants A, &, &p, and A3 are obtained from A, &7, Hp, and Ag.
A time history of u', a, and 6 as a function of the parameter sc

is obtained when the inversion theorem is applied to these equations
(the path angle 7 is then also determined as 6 = a + 7):

Y410
v - L 81 Asc
u'zixf.A‘_a‘D‘ _(Cg)
Y—ico
7+iw
_ 1 Lo Hsc
“‘Einf. A ° (c3)
7—l
7+iw£5 Y
0 = 1 23 o™MBegy, (ck)
2in AN
7—ico

In order to evaluate the integrals (C2), (C3), and (c4), the values of
all residues for each integral must be found and summed. This procedure
is demonstrated On equation (C2). The parameter A 1is substituted

for P, equation (10a) is substituted for A, and equation (1la) is
substituted for Z;. The auxiliary substitutions for Gl(x), GE(X),

and G3(X) are obtained from equations (7a), (7b), and (7c). The
values for fll(k), flg(k), and fl3(x) are obtained from equa—

tions (14), (15), and (16) and A 1is again substituted for P. Then
equation (C2) can be written
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Now u' =Ry + Ry + R3 + Ry. Substituting the values for Ry, Rp, R3,
and R) yields

' = (0.00001562 + 0.0000729481)e {0+ T39517+11.56351)sc
+ (0.00001562 — 0.0000729481)e(—0-739517-11.56351) 8¢

+ (0.0000009546 — ll.378551)e(-o.016582+o.ol+1+189561):sc

+ (0.0000009546 + 11.378551)e(—0+016562-0.044189561) s,

W = 6 0 T395178¢ (500001562611 903518¢ . (00001562011 5035180

+ 0.00007294816 1903518 _ g 0000709481611+ 563518¢)

N 6—0.01658250(0.00000095u6e—0.Ohh18956isc

+ 0.00000095466~0-OMH1895618c _ 11 37655140+ 044189561,

+ 11. 3785516—0 . 0&418956218(;)

With the use of the relations

eiX + 71X = 2 cos x

2i sin x

@
!

o
]

the value of u' can be expressed asg
ut =60 13991752 0200003124 cos 1156358, — Q. 000145896 s1n 11, 56358,)

+-6'0'01658250(0.0000019092(xx;o.ou418956sc4-22.75710si:10.04418956sc)

The roots must be computed very exactly to several decimals; other—
wise the computation by the method of residues does not check to zero.
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Evaluation of Residues
(2) Simple pole:

The residue at a simple pole of the function f(z) is

R = lim (z — a)f(z) (c6)
Z »a :

(b) Multiple pole:

Let
g(z) = (z — a)™f(z) | (c7)

Then the residue at the pole of mth order is

Ro_1 1 & elz)
(m—l)! 7 —»8 dZm—l

_ 1 dm—l
" Tm- 1) Lzm—l g(z]zza (€&

Example 1 (Simple poles).— Let

S [T a3 oM
21 [y 1, (A2 — 20 + 2)(A2 + 22 — 3)

The denominator has four roots. There are four simple poles (m = 1)
at A = =3, Ao =1, and X3,4 =1+ 1. The computation of the residue

at a slmple pole A = —3 is 1ltustrated. If the term under the integral
sign is called f(A)dr, then according to equation (CT)

g(x) = (x = 1)r(x)
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Thus the residue is

=13+ A - h)ert
" [( )L

A+ 2)(h=1)(+ 3 _3

_ (27 -3 -14)e3"
(9 +6+2)(=3 ~-1)

- _=3h -3t
-4 x 17

Example 2 (Double pole).— Let

2ix

7+1co
x(t) = ._l._. f (l‘xo + x1 + )'LXO) eX‘th
7

—1 oo (» + 2)2

There is now a double pole (m = 2) at A = a = —2. According to

equation (C7)

g(x) = (A + 2)2r(n)

which, when substituted into equation (C8), yields

R =

1]

_]:_,:_d__ (X + 2)2()»10 +‘ X3 + l.txo) GX{I
’l! da (X + 2)2 N
[%oext + t(Axo + x1 + hxo)ex?]k

dheo

Xo€2t 4 t(-2xo + x; + tho)e"gt

= [%o + (2xo + xl)fle'et

45
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Example 3 (Triple pole).— Let

Y+io v
1 —_ M oAtan

Ein‘ Yico (xz . a2)3

There are triple poles at A = 1a and at A =-la. If A = ia,
then equation (C7) gives

g(y) = (r — 1a)3 ——-5——3- oMt
(XE + a2)

which, substituted into equation (c8), gives

1162 (= ia)heM
1 2 3
D [(a + 1a)(x - 12)]°]

i

Ry

%

=ia

_ 1612 (‘b + %)eiat

Similarly, at A = —la

t i\ ~lat
Rp = — (t 1)e
1682 a
X—Rl+32

With the use of the relations

gin x =

co8 X =
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then

X = —t—(sin at — at cos at)

8a3

L7
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APPENDIX D
TRANSFORMS OF SIMULATING FUNCTIONS FOR CONTROL-SURFACE MOTION

Tn order to include the c’ontrol—-surface deflection as a function
of time (or parsmeter s, and Sb) in the equations of motion, the

agsumed motion must be simulated (for simplicity) by some simple known
functions.

Soms exsmples are given which could be satisfactory in many
practical cases. The functions are given here for five examples and
their transforms are given in table II.

(1) Step function:

0; t < 0)
Fo; t > 0)

« >
o
ol

(1a) Straight line:
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(2)

T\\
.,

=t
(3)
_T‘r.—_*_‘_—
Fyo :
l L.

(L)

>

= =),

<«

k9

(F = Foe'at)

[ = Fol1 — oot))

(F = Foo®t1 - &)
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(5)

= Fy sin at)
2n

——
gy
—
=
|

T
1
=]

|
|
|
| .
F: P S T pericd

.It is often convenient to get the result for unity of control—

surface deflection (say one radian); then the result for any arbitrary
deflection can be readily computed.
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APPENDIX E
SIMPLIFIED METHODS OF COMPUTATION

The computation of the time history of any parameter can be
shortened in some cases if the form of the solution and also the
value of the function and its first, second, and third derivatives
at a glven time are known.l It 1s preferable to find these boundary
conditions at time t = O (initial values). On the assumption that
the inversion theorem for Laplace transformation gives a parameter y
in the form

¥ = e UF7+1“ 20)e7a - oo (E1)
2 Uyt (M =2 )0 = )0 = Ag) (M = M)n

this method will be applied to the longitudinal and lateral motions.

Longitudinal motion.— The denominator (of the stability equation)
hag five roots with one root X5 = 0. The other four roots are

frequently two conjugate complex pairs:

=a + 1B

>
[
-
no
I

=5+ 1

If equation (1) is assumed to give the solution in the form

y = Cy + 6™¥(C sin Bt + Cp cos Bt) + o '(C3 sin Bt + Cy cos Bt) . .
(E2)
then C, = lim y can be evaluated. Differentiation of equation (E2)

t—>00
gives the derivatives ¥, ¥, and Y.

If the initial values of these functions are known, that is, y.,
Jo» Yo, 8and ., @t t =0 the constants Ci, Cop, C3, and Cy of

lThe author is indebted for this suggestion to Mr. J. M. Debevoise.
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equation (E2) can be obtained by sélving four simultaneous algedbraic
equations which can be written (for t = 0) as follows:

Jo =Co + Co+Cpy « . - S | (E3)
&o = BCy + alp + 803 + 70y - . . ‘ (EY4)
¥, = 208C; + (o? — p2)c, + 27805 + (2 - 82)cy, . . . (E5)

v (305213 - B3)Cl + (or.3 - 30,[32)02 + (3728 - 53)03

+ (B =390y, . .. (E6)

The value of °'y° can also be obtained by plotting ¥ against +t.

= % {[(o? ~ 89)cy — 2aBCQ:|sin Bt + [macl + (@@ - Bz)cg] cos Bt}
+ o7t {[(72 - 32)cy — Eﬁcﬂsin Bt + [27803‘ + (2 - SQ)Cu:lcos St}

Lateral motion.— For the case of lateral motion the equation has
one root X5 = 0, one conjugate complex palr, and two real roots

Xl,g =qa + iB

X3=7

i
¢4

xh

The time history of any parameter y can be written

y =C, + eXt(Cl sin Bt + C, cos Bt) + e7tC3 + eatcu (E7)
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and, as before, Co = lig y. The initial values of yg, Jos Jos
Y] 0
and y, for t =0 are assumed to be known. Differentiating

equation (E7) and substituting for t = 0 give four simultaneous
algebraic equations from which the constants Cq, Cp, C3, and Cyp

of equation (E2) can be determined:

yo=CO+C2+C3+C)+o-o (E8)
Jo = BCy + alp + 7C5 + 8Cy .+ . . (E9)
¥, = 2apCy + (oa® — B2)C, + 7205 + 8%, . . . (£10)

T = (3028 — B3)Ccy + (a3 - 3aBB)c, + 2305 + 8%y, . . . (E1D)

If desired the value of ‘y° can be obtainsd by plotting Y against
time

¥ = oot {[(o? - B2)c; — 2a502] sin Bt + [EaBCl + (a2 - ;32)02] cos Bt}

+ e7t7203 + estSECn

In the cases in which there are simple poles, the method presented
in reference 7 can be used. This method is 1llustrated briefly. It
has been seen that any parameter y of the equations of motion (such
as a, 8, V¥, @, and so forth) expressed as a function of the_
operator P can be written as a ratio of two determinants A(P)
and B(P) which are polynomials in P

y(P) = @)

Thus the characteristic equation is

. B(P) =0
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This equation is a polynomial in 7P, the highest power of P Dbelng g;

thus it has q roots: Xl, Aoy oo xq. The inversion theorem gives .
20 AN ) Mgt
g(e) = M8 ST A0K) Mty 5 )

B(t) =1 B'(*x)
where

B! = %§ B(P)

For multiple poles and speclal cases, see reference 7 (pp. 152
to 169).
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TABLE I

SIMPLE IAPLACE TRANSFORMS

o7

\oo
Transform x(t) x(P) = J e_Ptx(t)dt
0]
1 1 %—,
o t1  (n a positive 1
(n - 1)t integer) el
3 e85 (P > Re(a)) 1
P—-—a
in gin at 2
P2 + a2
P
5 cos at
P2 4+ a°
6 gin h at(P > jal) 2
P2 _ g2
P
7 cos h at(P > |al)
P2 — a°
8 ;E-sin at N S
2a (P2 + a2)2
9 —2;(51n at — at cos at) 1 5
2 (P2 + a2)
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TABLE IT
TRANSFORMS OF SIMULATING FUNCTIONS FOR CONTROL-SURFACE MOTIOR
Transform for
initial condition Transform for
Control—surface 5 -0 1
Type motion determining ) o assumption
00 F = l
x(t) _ - °
x(P) = e 'x(t)dt x(P)
0
1 Fo(t) step Fo L
function P P
la mt + b (m + bP) /P2 For b = 0, m/P2
¥ 1
o —at 0
Foe P+ a P+a
t Foa a
3 F (1 - e2Y _Fo8 _a
© P(P + a) P(P + a)
: Fsb
4 Fooet(1 - oY) ° b
(P + a)(P +a+ D) (P + a)(P +a+ D)
F,a
5 Fo sin at ° _____9_—
P2 + a2 P2 4 a2

_NACA
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Axes

e
Wind direction

Horizontael axis

Z

:;:E§§§;;P

Figure 1.~ Axes and notation used. Arrows indicate pogitive directions
of moments, forces, and angular displacements.
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